Math 102

Krishanu Sankar

October 2, 2018

Announcements

- Office Hours this week - W 11:30-1 and Th 12:30-2.

Announcements

- Office Hours this week - W 11:30-1 and Th 12:30-2.

OSH: If you encounter technical difficulties, email me a copy before midnight. This way, I can see what you finished on time.

Announcements

- Office Hours this week - W 11:30-1 and Th 12:30-2.
- OSH: If you encounter technical difficulties, email me a copy before midnight. This way, I can see what you finished on time.
- In-class
- I'll post slides on Canvas before lecture, and include extra practice questions at the end of the slides.
- If lecture is going too slowly and you want more practice, you can work on these questions.

Goals Today

- Linear Approximation and Newton's Method
- Similarities and differences
- What function and starting point to pick?
- Aphids and Ladybugs: a model
- Using derivatives to deduce features of a function
- Describing qualitative behavior
- Graph Sketching using derivatives

Goals Today

- Linear Approximation and Newton's Method
- Similarities and differences
- What function and starting point to pick?
- Aphids and Ladybugs: a model
- Using derivatives to deduce features of a function
- Describing qualitative behavior
- Graph Sketching using derivatives

General theme: more open-ended problem solving!

Warmup - Linear Approximation and Newton's Method

Question: Estimate the value of $\sqrt{15}$. Using linear approximation, the best choice will be:

$$
\begin{aligned}
& \text { 1. } f(x)=\sqrt{x} ; x_{0}=16 \\
& \text { 2. } f(x)=\sqrt{x}-15 ; x_{0}=4 \\
& \text { 3. } f(x)=\sqrt{x+15} ; x_{0}=0 \\
& \text { 4. } f(x)=x^{2}-15 ; x_{0}=4
\end{aligned}
$$

Warmup - Linear Approximation and Newton's Method

Question: Estimate the value of $\sqrt{15}$. Using linear approximation, the best choice will be:

$$
\begin{aligned}
& \text { 1. } f(x)=\sqrt{x} ; x_{0}=16 \\
& \text { 2. } f(x)=\sqrt{x}-15 ; x_{0}=4 \\
& \text { 3. } f(x)=\sqrt{x+15} ; x_{0}=0 \\
& \text { 4. } f(x)=x^{2}-15 \quad ; \quad x_{0}=4 \\
& f(15) \approx f(16)+f^{\prime}(16)(15-16) \\
& =4+\frac{1}{2 \cdot 4}(-1)=\frac{31}{8}
\end{aligned}
$$

Warmup - Linear Approximation and Newton's Method

Question: Estimate the value of $\sqrt{15}$. Using Newton's method, the best choice will be:

$$
\begin{aligned}
& \text { 1. } f(x)=\sqrt{x} \quad ; x_{0}=16 \\
& \text { 2. } f(x)=\sqrt{x}-15 ; x_{0}=4 \\
& \text { 3. } f(x)=\sqrt{x+15} ; x_{0}=0 \\
& \text { 4. } f(x)=x^{2}-15 \quad ; x_{0}=4
\end{aligned}
$$

Warmup - Linear Approximation and Newton's Method

Question: Estimate the value of $\sqrt{15}$. Using Newton's method, the best choice will be:

$$
\begin{aligned}
& \text { 1. } f(x)=\sqrt{x} ; x_{0}=16 \\
& \text { 2. } f(x)=\sqrt{x}-15 ; x_{0}=4 \\
& \text { 3. } f(x)=\sqrt{x+15} ; x_{0}=0 \\
& \text { 4. } f(x)=x^{2}-15 ; x_{0}=4 \\
& \quad x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& \quad=4-\frac{16-15}{2 \cdot 4}=\frac{31}{8}
\end{aligned}
$$

Ladybugs and Aphids

$x=$ size of aphid population.
$P(x)=$ predation rate $=\frac{30 x^{3}}{20^{3}+x^{3}}$
$G(x)=$ growth rate $=0.5 x$

Ladybugs and Aphids

$x=$ size of aphid population.
$P(x)=$ predation rate $=\frac{30 x^{3}}{20^{3}+x^{3}}$
$G(x)=$ growth rate $=0.5 x$
Let $R(x)$ be the net rate of change.

$$
\begin{aligned}
R(x) & =G(x)-P(x) \\
& =0.5 x-\frac{30 x^{3}}{20^{3}+x^{3}}
\end{aligned}
$$

Question: Why might I care about finding which values of x makes $R(x)=0$?

Ladybugs and Aphids

$x=$ size of aphid population.
$P(x)=$ predation rate $=\frac{30 x^{3}}{20^{3}+x^{3}}$
$G(x)=$ growth rate $=0.5 x$
Let $R(x)$ be the net rate of change.

$$
\begin{aligned}
R(x) & =G(x)-P(x) \\
& =0.5 x-\frac{30 x^{3}}{20^{3}+x^{3}}
\end{aligned}
$$

Question: Why might I care about finding which values of x makes $R(x)=0$?
Warning: x is the aphid population, not time!

$$
R(x)=0.5 x-\frac{30 x^{3}}{20^{3}+x^{3}}
$$

Question: What are the positive values of x such that $R(x)=0$? Let's solve...

$$
R(x)=0.5 x-\frac{30 x^{3}}{20^{3}+x^{3}}
$$

Question: What are the positive values of x such that $R(x)=0$? Let's solve...

$$
0.5-\frac{30 x^{2}}{20^{3}+x^{3}}=0
$$

$$
R(x)=0.5 x-\frac{30 x^{3}}{20^{3}+x^{3}}
$$

Question: What are the positive values of x such that $R(x)=0$? Let's solve...

$$
\begin{gathered}
0.5-\frac{30 x^{2}}{20^{3}+x^{3}}=0 \\
\Longrightarrow \frac{1}{2}=\frac{30 x^{2}}{20^{3}+x^{3}}
\end{gathered}
$$

$$
R(x)=0.5 x-\frac{30 x^{3}}{20^{3}+x^{3}}
$$

Question: What are the positive values of x such that $R(x)=0$? Let's solve...

$$
\begin{gathered}
0.5-\frac{30 x^{2}}{20^{3}+x^{3}}=0 \\
\Longrightarrow \frac{1}{2}=\frac{30 x^{2}}{20^{3}+x^{3}} \\
\Longrightarrow 8000+x^{3}=60 x^{2} \Longrightarrow x^{3}-60 x^{2}+8000=0
\end{gathered}
$$

Sketching $f(x)=x^{3}-60 x^{2}+8000$

$$
\begin{gathered}
x \approx 0 \Longrightarrow f(x) \approx 8000 \\
x \rightarrow \pm \infty \Longrightarrow f(x) \rightarrow \pm \infty
\end{gathered}
$$

Sketching $f(x)=x^{3}-60 x^{2}+8000$

$$
\begin{gathered}
x \approx 0 \Longrightarrow f(x) \approx 8000 \\
x \rightarrow \pm \infty \Longrightarrow f(x) \rightarrow \pm \infty
\end{gathered}
$$

Question: Which sketch is more accurate?

Strategy: We can calculate the y-coordinate of the local minimum.

Strategy: We can calculate the y-coordinate of the local minimum.
We will do this by solving $f^{\prime}(x)=0$, then plugging that x-value into $f(x)$.

$$
\begin{gathered}
f(x)=x^{3}-60 x^{2}+8000 \\
\Longrightarrow f^{\prime}(x)=3 x^{2}-120 x=0 \\
\Longrightarrow 3 x^{2}=120 x \Longrightarrow x=0,40
\end{gathered}
$$

$$
\begin{gathered}
f(x)=x^{3}-60 x^{2}+8000 \\
\Longrightarrow f^{\prime}(x)=3 x^{2}-120 x=0 \\
\Longrightarrow 3 x^{2}=120 x \Longrightarrow x=0,40
\end{gathered}
$$

Plugging in,

$$
f(40)=64000-96000+8000=-24000
$$

which is negative. Therefore, $f(x)$ has two positive zeroes.

Newton's Method

Question: The local minimum occurs at $x=40$. If we want to estimate the larger root, what would be a good x_{0} to start with?

$$
\begin{array}{ll}
\text { (A) } x_{0}=40 & \text { (B) } x_{0}=20 \\
\text { (C) } x_{0}=0 & \text { (D) } x_{0}=50
\end{array}
$$

Newton's Method

Question: The local minimum occurs at $x=40$. If we want to estimate the larger root, what would be a good x_{0} to start with?

$$
\begin{array}{ll}
\text { (A) } x_{0}=40 & \text { (B) } x_{0}=20 \\
\text { (C) } x_{0}=0 & \text { (D) } x_{0}=50
\end{array}
$$

Newton's Method

Question: The local minimum occurs at $x=40$. If we want to estimate the smaller root, what would be a good x_{0} to start with?

$$
\begin{array}{ll}
\text { (A) } x_{0}=40 & \text { (B) } x_{0}=20 \\
\text { (C) } x_{0}=0 & \text { (D) } x_{0}=50
\end{array}
$$

Newton's Method

Question: The local minimum occurs at $x=40$. If we want to estimate the smaller root, what would be a good x_{0} to start with?

$$
\begin{array}{ll}
\text { (A) } x_{0}=40 & \text { (B) } x_{0}=20 \\
\text { (C) } x_{0}=0 & \text { (D) } x_{0}=50
\end{array}
$$

Newton's Method

$$
\begin{gathered}
f(x)=x^{3}-60 x^{2}+8000 \\
f^{\prime}(x)=3 x^{2}-120 x
\end{gathered}
$$

Iteratively use the formula $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$, and stop when satisfied. For example, if $x_{0}=20$,

$$
\begin{aligned}
x_{1} & =20-\frac{f(20)}{f^{\prime}(20)} \\
& =20-\frac{-8000}{-1200} \\
& =20-\frac{20}{3} \approx 13.33
\end{aligned}
$$

Ladybugs and Aphids

Question: Suppose that $x>r_{2}$. What happens to the aphid population over time?

1. It grows without bound.
2. It shrinks to zero.
3. It grows to some equilibrium.
4. It shrinks to some nonzero equilibrium.
5. It fluctuates.

Ladybugs and Aphids

Question: Suppose that $x>r_{2}$. What happens to the aphid population over time?

1. It grows without bound.
2. It shrinks to zero.
3. It grows to some equilibrium.
4. It shrinks to some nonzero equilibrium.
5. It fluctuates.

Ladybugs and Aphids

Question: Suppose that $x<r_{1}$. What happens to the aphid population over time?

1. It grows without bound.
2. It shrinks to zero.
3. It grows to some equilibrium.
4. It shrinks to some nonzero equilibrium.
5. It fluctuates.

Ladybugs and Aphids

Question: Suppose that $x<r_{1}$. What happens to the aphid population over time?

1. It grows without bound.
2. It shrinks to zero.
3. It grows to some equilibrium.
4. It shrinks to some nonzero equilibrium.
5. It fluctuates.

Ladybugs and Aphids

Question: Suppose that $r_{1}<x<r_{2}$. What happens to the aphid population over time?

1. It grows without bound.
2. It shrinks to zero.
3. It grows to some equilibrium.
4. It shrinks to some nonzero equilibrium.
5. It fluctuates.

Ladybugs and Aphids

Question: Suppose that $r_{1}<x<r_{2}$. What happens to the aphid population over time?

1. It grows without bound.
2. It shrinks to zero.
3. It grows to some equilibrium.
4. It shrinks to some nonzero equilibrium.
5. It fluctuates.

Graph Sketching

- Previously, we learned to sketch the graph of a rational function using asymptotic behavior.

Graph Sketching

- Previously, we learned to sketch the graph of a rational function using asymptotic behavior.
- This provides rough sketches. We'd like to use calculus to create more accurate drawings of functions. For example,
- Are there zeroes?
- Are there local maxima and minima?
- Are there inflection points?
- Can we use these features to make our drawing to scale?

Graph Sketching

Question: Create a to-scale graph of

$$
f(x)=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-3 x^{2}+4
$$

- Behavior at $x \approx 0$ and $x \rightarrow \infty$
- $f^{\prime}(x)$: function is increasing vs. decreasing. Label critical points.
- $f^{\prime \prime}(x)$ function is concave up vs concave down. Label inflection points (when concavity changes sign).

Recap

- Linear Approximation and Newton's Method
- Similarities and differences
- What function and starting point to pick?
- Aphids and Ladybugs: a model
- Using derivatives to deduce features of a function
- Describing qualitative behavior

Graph Sketching using derivatives

Additional Exercises - tangent lines

- Question: Find the equation of the line tangent to $y=2 x^{3}-9 x^{2}+6$ which is parallel to $y=-12 x+1$.
- Question: Find the equation of the line tangent to $y=4-x^{2}$ which passes through $(0,5)$.
We may do questions similar to these in a future class!

