Math 102

Krishanu Sankar

October 2, 2018

Announcements

Office Hours this week - W 11:30-1 and Th 12:30-2.

Announcements

- Office Hours this week W 11:30-1 and Th 12:30-2.
- OSH: If you encounter technical difficulties, email me a copy before midnight. This way, I can see what you finished on time.

Announcements

- Office Hours this week W 11:30-1 and Th 12:30-2.
- OSH: If you encounter technical difficulties, email me a copy before midnight. This way, I can see what you finished on time.

In-class

- I'll post slides on Canvas before lecture, and include extra practice questions at the end of the slides.
- If lecture is going too slowly and you want more practice, you can work on these questions.

Goals Today

Linear Approximation and Newton's Method

- Similarities and differences
- What function and starting point to pick?
- Aphids and Ladybugs: a model
 - Using derivatives to deduce features of a function
 - Describing qualitative behavior
- Graph Sketching using derivatives

Goals Today

Linear Approximation and Newton's Method

- Similarities and differences
- What function and starting point to pick?
- Aphids and Ladybugs: a model
 - Using derivatives to deduce features of a function
 - Describing qualitative behavior
- Graph Sketching using derivatives

General theme: more open-ended problem solving!

Question: Estimate the value of $\sqrt{15}$. Using linear approximation, the best choice will be:

1.
$$f(x) = \sqrt{x}$$
; $x_0 = 16$
2. $f(x) = \sqrt{x - 15}$; $x_0 = 4$
3. $f(x) = \sqrt{x + 15}$; $x_0 = 0$
4. $f(x) = x^2 - 15$; $x_0 = 4$

Question: Estimate the value of $\sqrt{15}$. Using linear approximation, the best choice will be:

1.
$$f(x) = \sqrt{x}$$
; $x_0 = 16$
2. $f(x) = \sqrt{x - 15}$; $x_0 = 4$
3. $f(x) = \sqrt{x + 15}$; $x_0 = 0$
4. $f(x) = x^2 - 15$; $x_0 = 4$
 $f(15) \approx f(16) + f'(16)(15 - 16)$
 $= 4 + \frac{1}{2 + 4}(-1) = \frac{31}{8}$

Question: Estimate the value of $\sqrt{15}$. Using Newton's method, the best choice will be:

1.
$$f(x) = \sqrt{x}$$
; $x_0 = 16$
2. $f(x) = \sqrt{x - 15}$; $x_0 = 4$
3. $f(x) = \sqrt{x + 15}$; $x_0 = 0$
4. $f(x) = x^2 - 15$; $x_0 = 4$

Question: Estimate the value of $\sqrt{15}$. Using Newton's method, the best choice will be:

1.
$$f(x) = \sqrt{x}$$
; $x_0 = 16$
2. $f(x) = \sqrt{x - 15}$; $x_0 = 4$
3. $f(x) = \sqrt{x + 15}$; $x_0 = 0$
4. $f(x) = x^2 - 15$; $x_0 = 4$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

= $4 - \frac{16 - 15}{2 \cdot 4} = \frac{31}{8}$

x = size of aphid population.

$$P(x) =$$
predation rate $= \frac{30x^3}{20^3 + x^3}$

G(x) =growth rate = 0.5x

$$x = size of aphid population.$$

$$P(x) =$$
predation rate $= rac{30x^3}{20^3 + x^3}$

$$G(x) =$$
growth rate $= 0.5x$

Let R(x) be the net rate of change.

$$R(x) = G(x) - P(x)$$

= $0.5x - \frac{30x^3}{20^3 + x^3}$

Question: Why might I care about finding which values of x makes R(x) = 0?

$$x = size of aphid population.$$

$$P(x) =$$
predation rate $= rac{30x^3}{20^3 + x^3}$

$$G(x) =$$
growth rate $= 0.5x$

Let R(x) be the net rate of change.

$$R(x) = G(x) - P(x)$$

= $0.5x - \frac{30x^3}{20^3 + x^3}$

Question: Why might I care about finding which values of x makes R(x) = 0? Warning: x is the *aphid population*, **not** time!

$$R(x) = 0.5x - \frac{30x^3}{20^3 + x^3}$$

$$R(x) = 0.5x - \frac{30x^3}{20^3 + x^3}$$

$$0.5 - \frac{30x^2}{20^3 + x^3} = 0$$

$$R(x) = 0.5x - \frac{30x^3}{20^3 + x^3}$$

$$0.5 - \frac{30x^2}{20^3 + x^3} = 0$$
$$\implies \frac{1}{2} = \frac{30x^2}{20^3 + x^3}$$

$$R(x) = 0.5x - \frac{30x^3}{20^3 + x^3}$$

$$0.5 - \frac{30x^2}{20^3 + x^3} = 0$$
$$\implies \frac{1}{20} = \frac{30x^2}{20x^2}$$

$$\Rightarrow \ \overline{2} = \overline{20^3 + x^3}$$

 $\implies 8000 + x^3 = 60x^2 \implies x^3 - 60x^2 + 8000 = 0$

Sketching $f(x) = x^3 - 60x^2 + 8000$

$$\begin{array}{c} x \approx 0 \implies f(x) \approx 8000 \\ x \rightarrow \pm \infty \implies f(x) \rightarrow \pm \infty \end{array}$$

Sketching $f(x) = x^3 - 60x^2 + 8000$

$$\begin{array}{c} x \approx 0 \implies f(x) \approx 8000 \\ x \rightarrow \pm \infty \implies f(x) \rightarrow \pm \infty \end{array}$$

Question: Which sketch is more accurate?

Strategy: We can calculate the *y*-coordinate of the local minimum.

Strategy: We can calculate the y-coordinate of the local minimum. We will do this by solving f'(x) = 0, then plugging that x-value into f(x). $f(x) = x^3 - 60x^2 + 8000$ $\implies f'(x) = 3x^2 - 120x = 0$ $\implies 3x^2 = 120x \implies x = 0, 40$

$$f(x) = x^3 - 60x^2 + 8000$$
$$\implies f'(x) = 3x^2 - 120x = 0$$
$$\implies 3x^2 = 120x \implies x = 0, 40$$

Plugging in,

f(40) = 64000 - 96000 + 8000 = -24000

which is negative. Therefore, f(x) has two positive zeroes.

Question: The local minimum occurs at x = 40. If we want to estimate the **larger root**, what would be a good x_0 to start with?

(A) $x_0 = 40$	(B) $x_0 = 20$
(C) $x_0 = 0$	(D) $x_0 = 50$

Question: The local minimum occurs at x = 40. If we want to estimate the **larger root**, what would be a good x_0 to start with?

(A) $x_0 = 40$	(B) $x_0 = 20$
(C) $x_0 = 0$	(D) $x_0 = 50$

Question: The local minimum occurs at x = 40. If we want to estimate the **smaller root**, what would be a good x_0 to start with?

(A) $x_0 = 40$	(B) $x_0 = 20$
(C) $x_0 = 0$	(D) $x_0 = 50$

Question: The local minimum occurs at x = 40. If we want to estimate the **smaller root**, what would be a good x_0 to start with?

(A)
$$x_0 = 40$$
 (B) $x_0 = 20$
(C) $x_0 = 0$ (D) $x_0 = 50$

$$f(x) = x^{3} - 60x^{2} + 8000$$
$$f'(x) = 3x^{2} - 120x$$

Iteratively use the formula $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, and stop when satisfied. For example, if $x_0 = 20$,

$$x_1 = 20 - \frac{f(20)}{f'(20)}$$

= 20 - $\frac{-8000}{-1200}$
= 20 - $\frac{20}{3} \approx 13.33$

Question: Suppose that $x > r_2$. What happens to the aphid population over time?

- 1. It grows without bound.
- 2. It shrinks to zero.
- 3. It grows to some equilibrium.
- 4. It shrinks to some nonzero equilibrium.
- 5. It fluctuates.

Question: Suppose that $x > r_2$. What happens to the aphid population over time?

- 1. It grows without bound.
- 2. It shrinks to zero.
- 3. It grows to some equilibrium.
- 4. It shrinks to some nonzero equilibrium.
- 5. It fluctuates.

Question: Suppose that $x < r_1$. What happens to the aphid population over time?

- 1. It grows without bound.
- 2. It shrinks to zero.
- 3. It grows to some equilibrium.
- 4. It shrinks to some nonzero equilibrium.
- 5. It fluctuates.

Question: Suppose that $x < r_1$. What happens to the aphid population over time?

- 1. It grows without bound.
- 2. It shrinks to zero.
- 3. It grows to some equilibrium.
- 4. It shrinks to some nonzero equilibrium.
- 5. It fluctuates.

Question: Suppose that $r_1 < x < r_2$. What happens to the aphid population over time?

- 1. It grows without bound.
- 2. It shrinks to zero.
- 3. It grows to some equilibrium.
- 4. It shrinks to some nonzero equilibrium.
- 5. It fluctuates.

Question: Suppose that $r_1 < x < r_2$. What happens to the aphid population over time?

- 1. It grows without bound.
- 2. It shrinks to zero.
- 3. It grows to some equilibrium.
- 4. It shrinks to some nonzero equilibrium.
- 5. It fluctuates.

Graph Sketching

Previously, we learned to sketch the graph of a rational function using asymptotic behavior.

Graph Sketching

- Previously, we learned to sketch the graph of a rational function using asymptotic behavior.
- This provides rough sketches. We'd like to use calculus to create more accurate drawings of functions. For example,
 - Are there zeroes?
 - Are there local maxima and minima?
 - Are there inflection points?
 - Can we use these features to make our drawing to scale?

Graph Sketching

Question: Create a to-scale graph of

$$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - 3x^2 + 4$$

- Behavior at $x \approx 0$ and $x \to \infty$
- f'(x): function is increasing vs. decreasing.
 Label critical points.
- f''(x) function is concave up vs concave down.
 Label inflection points (when concavity changes sign).

Recap

Linear Approximation and Newton's Method

- Similarities and differences
- What function and starting point to pick?
- Aphids and Ladybugs: a model
 - Using derivatives to deduce features of a function
 - Describing qualitative behavior
- Graph Sketching using derivatives

Additional Exercises - tangent lines

- ► Question: Find the equation of the line tangent to y = 2x³ - 9x² + 6 which is parallel to y = -12x + 1.
- ► Question: Find the equation of the line tangent to y = 4 - x² which passes through (0,5).

We may do questions similar to these in a future class!